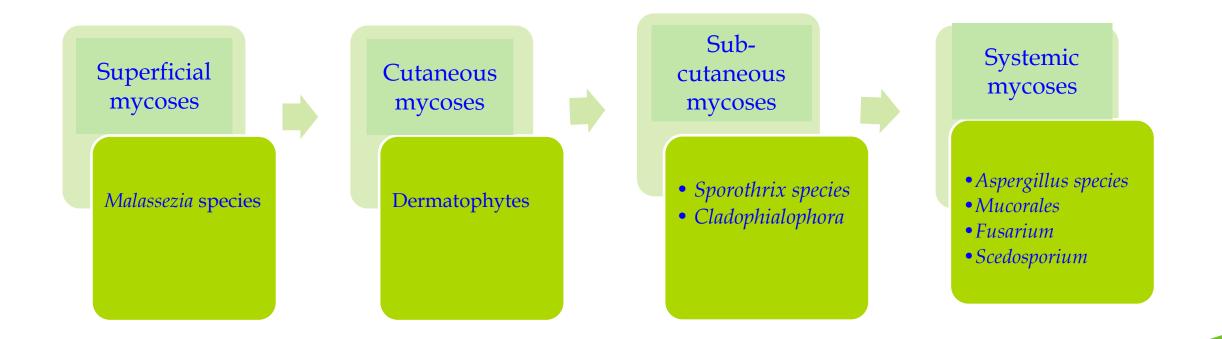
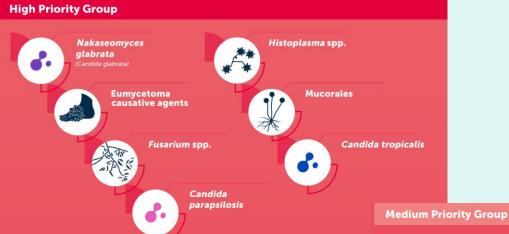

Azole resistance in *Aspergillus* species in Iran: Is there a challenge coming up?

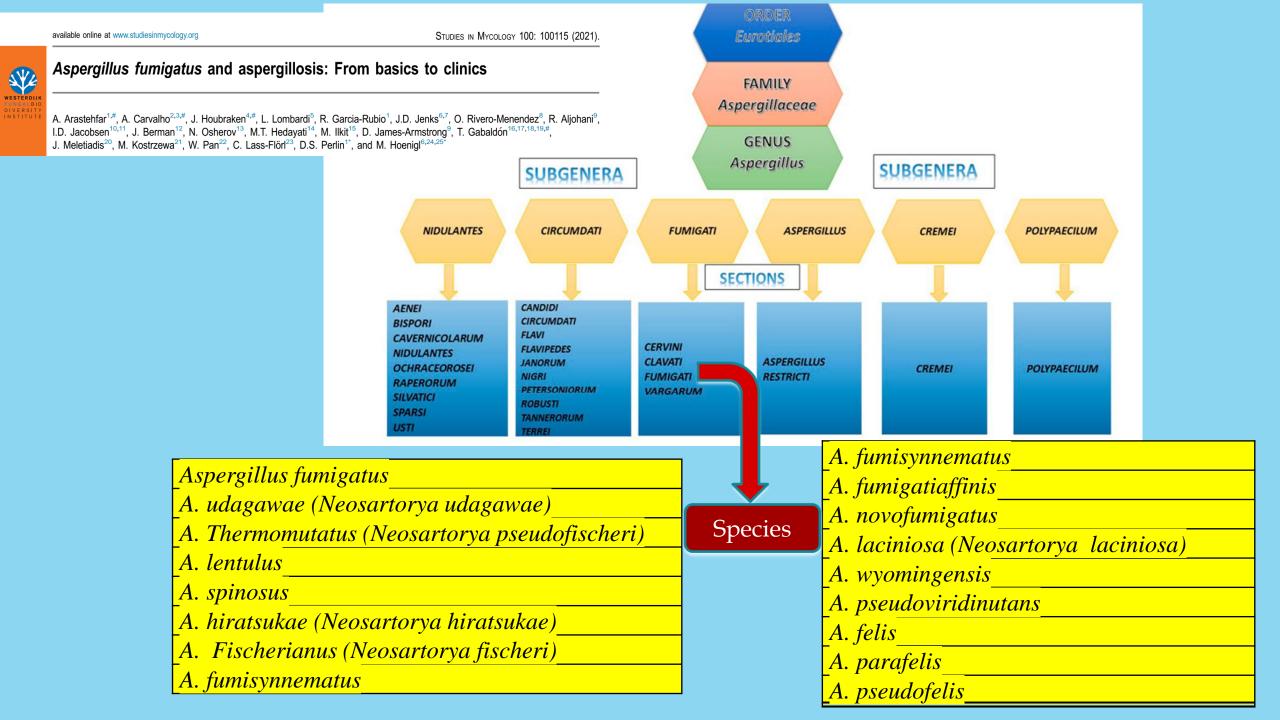
Mohammad T. Hedayati

Invasive Fungi Research Center/ Department of Medical Mycology, Mazandaran University of Medical Sciences, Sari, Iran

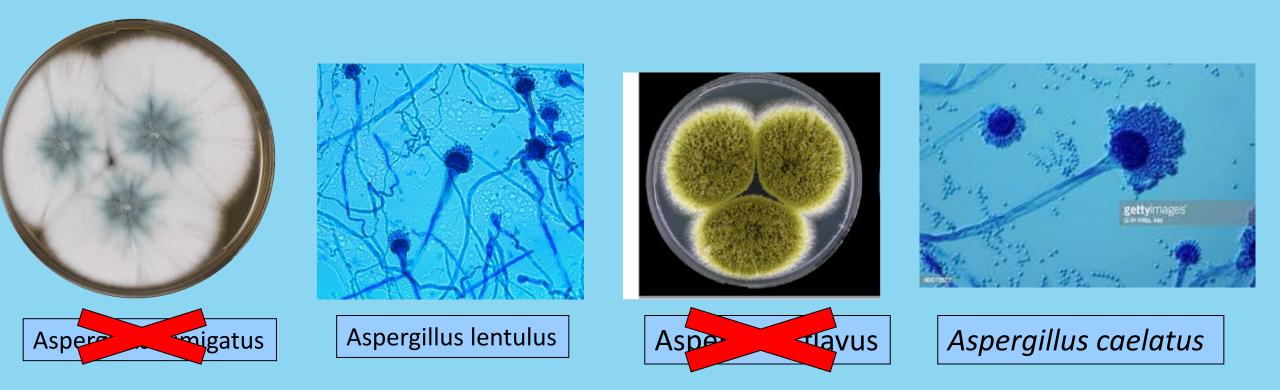



models and patients

Azoles in human:

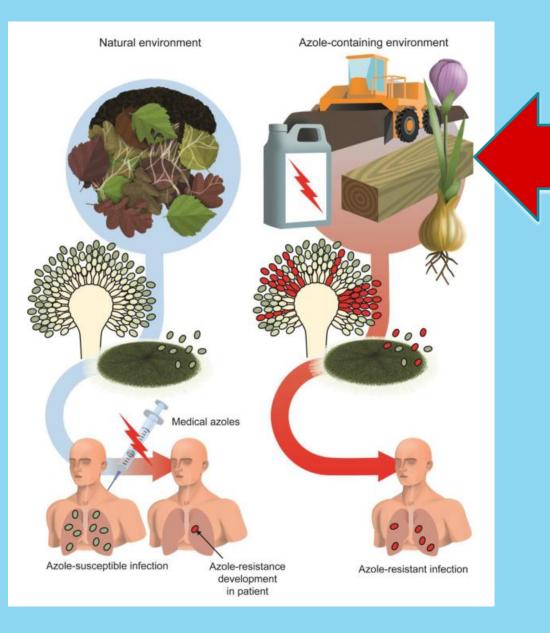

Critical Priority Group Cryptococcus neoformans Aspergillus fumigatus Candida auris Candida albicans Candida albicans

WHO fungal priority pathogens list



Coccidioides spp. Pichia kudriavzeveii (Candida krusei)

Interactive quiz


Mode of transmission and Portal of exit

- The portal of exit is closely related to the mode of transmission.
 Aspergillosis is not transmitted form person to person
- the emphasis on focusing control measures on preventing the exit of that organism from the infected patient does not appear to a major component.

Reservoir

Two main environmental sources:

- Outside air entering
 hospital through gaps in
 filters, windows, backflow
 of contaminated air
- Moist environments (e.g., plumbing, leaks, rainwater, air conditioning condensate

Azole-resistant Aspergillus


- * The Netherlands was the European country using the greatest amount of azole fungicide, followed by Germany and France.
- In fact, the first environmental pan-azole-resistant Aspergillus fumigatus isolate was detected in the Netherlands [Lass-Florl, C.; et al. A nationwide passive surveillance on fungal infections shows a low burden of azole resistance in molds and yeasts in Tyrol, Austria. Infection 2018, 46, 701-704.].
- For clinical isolates, a study performed in a cardiothoracic center in London detected a higher prevalence of azole-resistant *Aspergillus fumigatus* (13.2%) principally associated with the environmentally driven TR34/L98H mutation.

Epidemiology of Azole-resistant Aspergillus

- Many studies have principally focused on azole-resistant *A. fumigatus* isolates because they represent the predominant pathogen of aspergillosis.
- * The first case of ARAF was reported in the late 1980s in the Netherlands.
- * The overall azole resistance rate of *A. fumigatus* was reported as ranging from 0.6 to 27.8%, depending on the isolation country, the type of disease, and the emergence of the environmental resistance mechanism.
- * Most of the environmental azole-resistant isolates were found in Europe (56.7%) than in other countries due to the higher azole fungicide application per hectare of agricultural land (Burks, C.; Darby, A.; Gomez Londoño Momany, M.; Brewer, M.T. Azole-resistant *Aspergillus fumigatus* in the environment: Identifying key reservoirs and hotspots of antifungal resistance. *PLoS Pathog.* 2021, 17, e1009711.).

Prevalence of azole-resistant *Aspergillus fumigatus* strains in European countries.

Pathogens 2023, 12, 1305.

12

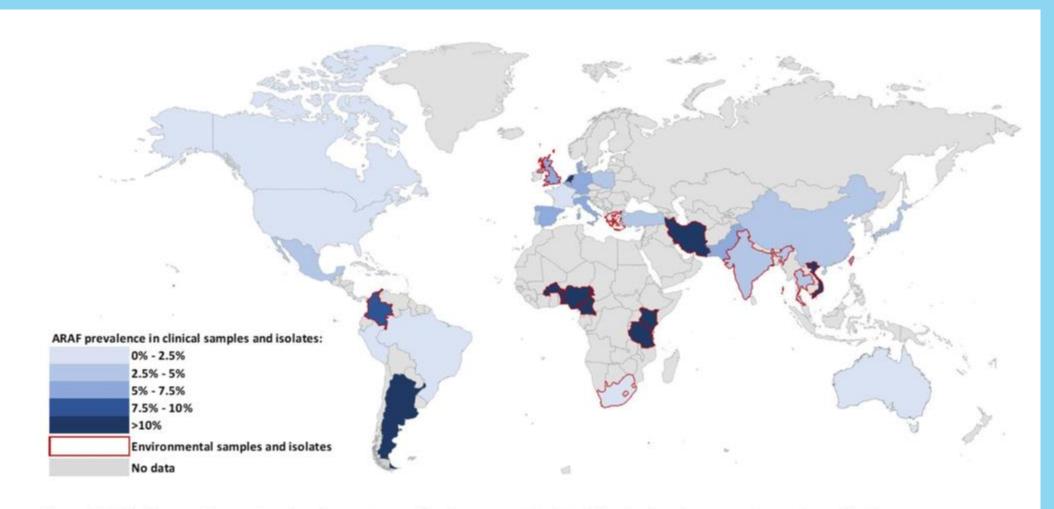
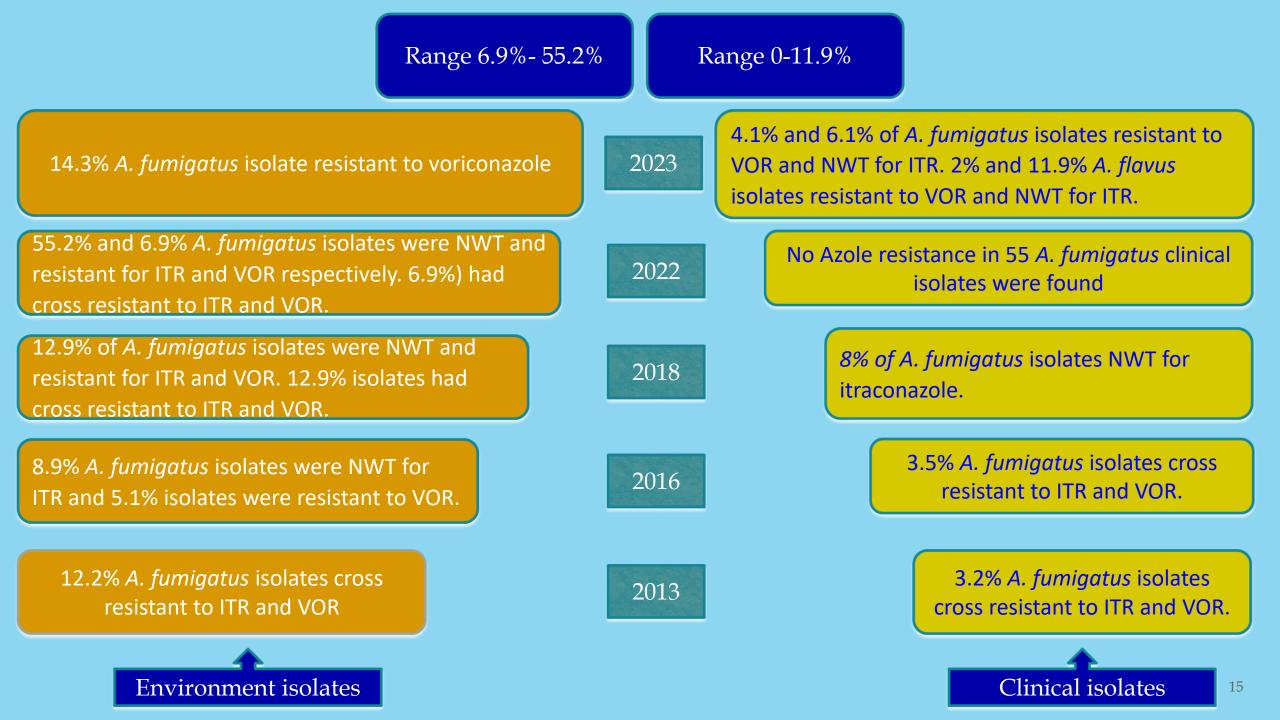
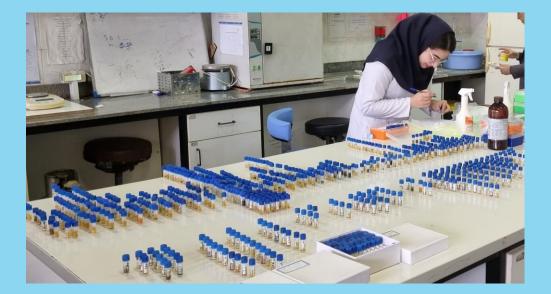



Fig. 1 Worldwide prevalence of azole resistant Aspergillus fumigatus (ARAF) clinical and environmental samples and isolates

A note!

- In a recent study [Fakhim, H.; et al. Trends in the prevalence of amphotericin B resistance (AmBR) among clinical isolates of Aspergillus species. J. Mycol. Med. 2022, 32, 101310], among 26,909 Aspergillus isolates analyzed, resistance to amphotericin B was detected in 36.8% of A. terreus, 14.9% of A. flavus, 5.2% of A. niger, and 2.01% of A. fumigatus isolates.
- Some A. lentulus and A. ustus isolates have been reported to show amphotericin B resistance.
- Additionally, an increasing trend in amphotericin B resistance was observed in *A. fumigatus* between 2016 and 2020, together with a decreasing trend in amphotericin B resistance in *A. terreus* and *A. flavus*.



Journal of Hospital Infection 145 (2024) 65-76

Electronic equipment and appliances in special wards of hospitals as a source of azole-resistant *Aspergillus fumigatus*: a multi-centre study from Iran

M. Ghazanfari^{a, b}, M. Abastabar^{a, b}, I. Haghani^a, F. Kermani^b, N. Keikha^c, M. Kholoujini^d, M.H. Minooeianhaghighi^e, S.A. Jeddi^f, A. Shokri^g, A. Ghojoghi^h, K. Amirizadⁱ, M. Azish^j, Y. Nasirzadeh^b, B. Roohi^b, M. Nosratabadi^{b, k}, S. Hedayati^l, S. Ghanbari^{b, l}, R. Valadan^m, M.T. Hedayati^{a, b, *}

Results

• A total of 693 samples were collected from electronic medical equipment and appliances in 23 educational hospitals from 18 provinces of Iran.

Table I

_

Distribution of isolated *Aspergillus* species (*N*=89) on azole containing agar plates

Subgenus	Section	Species	No. of isolates			
Fumigati	Fumigati	A. fumigatus	37 (41.6%)			
Circumdati	Flavi	A. flavus	5 (5.6%)			
		A. oryzae	4 (4.5%)			
	Nigri	A. tubingensis	21 (23.6%)			
		A. niger	14 (15.7%)			
		A. welwitschiae	2 (2.2%)			
		A. luchuensis	2 (2.2%)			
		A. japonicus	2 (2.2%)			
		A. awamori	1 (1.1%)			
	Circumdati	A. terreus	1 (1.1%)			

In Vitro Antifungal Susceptibility Test

- Among different species of *Aspergillus, A. fumigatus* showed the highest MIC₅₀/MIC₉₀ to all azoles tested (VCZ: 2/>16 µg/mL; ICZ: 1/16 µg/mL; PCZ: 0.25/1 µg/mL).
- VCZ showed the highest *in vitro* antifungal activity against *A. flavus*
- Whereas *A. niger* had the highest *in vitro* susceptibility to PCZ and ICZ.
- MICs 4, 2, and 1 (µg/mL) were observed as the highest MICs of *A*. *fumigatus* to VCZ, ICZ, and PCZ, respectively.
- A proportion of 12.8% (89/693) azole resistance *Aspergillus* species were recovered.
- VCZ resistance *A. fumigatus* were recovered as 5.3% (37/693).

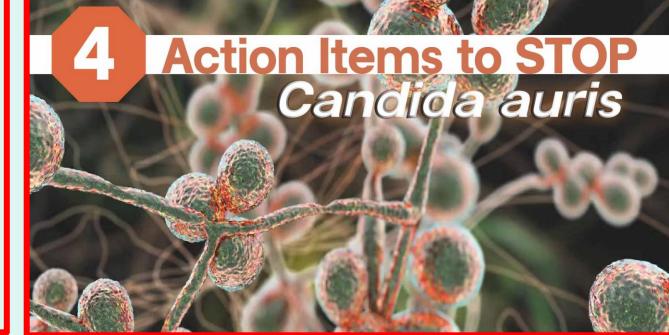
Cont. In Vitro Antifungal Susceptibility Test

- In terms of the defined MIC breakpoint and ECV for azoles against *Aspergillus* spp. isolates, among the 37 *A. fumigatus* isolates obtained from ACAP, 8.1% were classified as intermediate, and 51.3% were classified as resistant to VCZ.
- The non-wild type of *A. fumigatus* against ICZ was identified in 56.8% of isolates.
- The non-wild type of A. niger to VCZ was observed in 7.1% of isolates.
- One isolate of *A. flavus* (1/5, 20%) was reported as non-wild type to PCZ.
- Of the 37 isolates of *A. fumigatus*, 48.6% showed cross-resistance to VCZ and ITZ.

lsolate number	Isolat	Isolated from ACAP		MIC (µg/mL)		CYP51A mutations												
	VCZ	ICZ	PCZ	VCZ	ICZ	PCZ	F46Y	G54E	G138C	Y121F	M172V	M220I	D255E	T289F	G432C	G448S	L98H	TR34
22s		+		4	8	0.063	+	+	+		+	+	+	+	+	+		_
3	+			4	4	1	+	+	+	_	+	+	+	+	+	+	+	+
4	+			2	4	0.063	+	+	+	_	+	+	+	+	+	+	+	+
14	+			>16	2	0.5	+	+	+	+	+	+	+	_	+	+	_	_
15	+			4	16	1	+	+	+	_	+	+	+	+	+	+	+	+
18	+			4	16	0.5	+	+	+	_	+	+	+	+	+	+	+	+
19	+			4	>16	1	+	+	+	_	+	+	+	+	+	+	+	+
21	+	+		4	16	1	+	+	+	_	+	+	+	+	+	+	+	+
29	+			>16	2	0.125	+	+	+	+	+	+	+	_	+	+	_	_
35	+			4	8	2	+	+	+	_	+	+	+	+	+	+	+	+
46	+	+		8	>16	1	+	+	+	_	+	+	+	_	+	+	+	+
47	+	+		4	>16	0.5	+	+	+		+	+	+	+	+	+	+	+
56		+		16	2	0.25	+	+	+	+	+	+	+	_	+	+	_	_
63	+	+		>16	2	1	+	+	+	+	+	+	+	_	+	+	_	_
72		+		8	>16	1	+	+	+	+	+	+	+	+	+	+	+	+
97	+			>16	1	0.063	+	+	+	+	+	+	+	_	+	+	_	_
23	+			4	16	1	_	_	_	_	+	+	+	+	+	+	_	_
34	+			2	2	1	+	+	+	_	_	_	_	_	+	+	_	_
65	+			>16	2	0.5	+	+	+	+	+	+	+	_	+	+	_	_

Characteristics of azole-resistant and non-wild-type A. fumigatus isolates and detected mutations

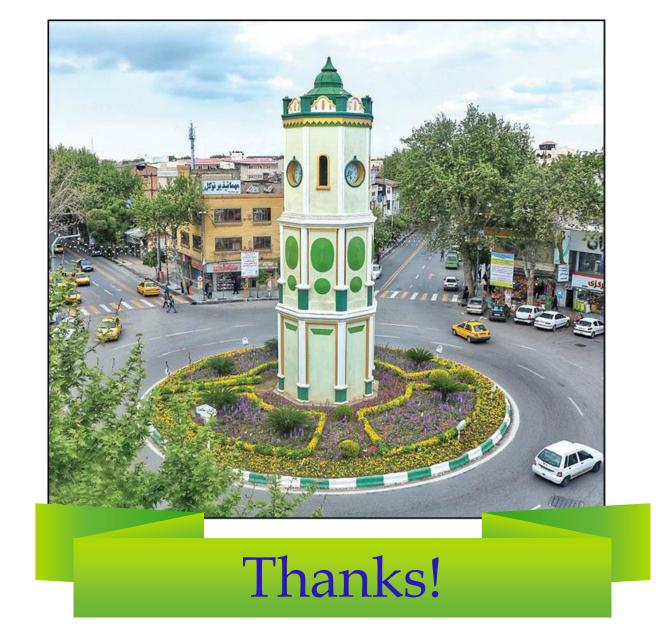
Table III


ACAP, azole-containing agar plate; MIC, minimum inhibitory concentration; ICZ, itraconazole; VCZ, voriconazole; PCZ, posaconazole.

High prevalence of Terbinafine resistance among

T. mentagrophytes/T. interdigitale complex isolated

from Iran


Iman Haghani^{1,2}, Maryam Babaie¹, Akbar Hoseinnejad^{3,4}, Ali Rezaei-Matehkolaei⁴, Ramin Mofarah⁵, Zahra Yahyazadeh¹, Firoozeh Kermani⁶, Javad Javidnia^{1,2}, Tahereh Shokohi^{1,2}, Maryam Azish⁷, Kambiz Kamyab Hesari⁸, Majid Saeedi⁹, Zeynab Ghasemi⁸, Shaghayegh Khojasteh¹⁰, Zohreh Hajheydari¹¹, Elham Mosayebi^{1,2}, Reza Valadan¹², Seyedmojtaba Seyedmousavi¹³, Mahdi Abastabar^{1,2}*, M.T. Hedayati^{1,2}*

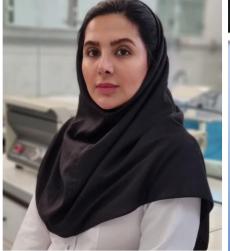
Recommendation

- Active surveillance for potential sources of fungal contamination
- In vitro antifungal susceptibility testing for all clinical fungal isolates routinely
- > *A. flavus* should be considered as the main cause of IA in Iran
- Testing for identification of mutations in clinical fungal isolates routinely
- Presence of a real infection control committee in all hospitals

hedayatimt@gmail.com

Dr. M. Ghazanfari

S. Ghanbari


B. Nikoueian

S. Yaalimadad

